
Noir
Design, Implementation and Evaluation

of a Streaming and Batch Processing Framework
Marco Donadoni Edoardo Morassutto

Noir
Design, Implementation and Evaluation

of a Streaming and Batch Processing Framework
Marco Donadoni Edoardo Morassutto

20
21

-1
0-

06

Noir

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner

Distributed computing

: synchronization, communication,
deployment, etc.

Two kinds of workloads:

Batch processing / Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner

Distributed computing

: synchronization, communication,
deployment, etc.

Two kinds of workloads:

Batch processing / Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing

: synchronization, communication,
deployment, etc.
Two kinds of workloads:

Batch processing / Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing

: synchronization, communication,
deployment, etc.
Two kinds of workloads:

Batch processing / Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.

Two kinds of workloads:

Batch processing / Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.

Two kinds of workloads:

Batch processing / Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads:

Batch processing / Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads:

Batch processing / Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads: Batch processing

/ Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads: Batch processing

/ Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

1/19

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads: Batch processing / Stream processing

M. Donadoni, E. Morassutto

Introduction

The Problem

Big Data: huge amounts of information to process, in a timely
manner
Distributed computing: synchronization, communication,
deployment, etc.
Two kinds of workloads: Batch processing / Stream processing

20
21

-1
0-

06

Noir
Introduction

The Problem

• Big Data: many things to process, time constraints
• Single computer is not enough, many machines are needed
• Many problems: synchronization, communication, deployment, etc.
• Two kinds of data intensive workloads: Batch processing / Stream

processing
• Batch Processing: finite dataset, results as fast as possible
• Stream processing: possibly infinite dataset, flow of tuples that need

to be processed as they come (low latency)

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)

Best performance possible

▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)

Best performance possible

▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible

▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible

▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place

▶ Optimizations tailored to the task to solve
Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place

▶ Optimizations tailored to the task to solve
Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …

Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …
Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation

▶ parallelization, synchronization, communication, …
Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation
▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation
▶ parallelization, synchronization, communication, …

Code is complex

20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

2/19

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation
▶ parallelization, synchronization, communication, …

Code is complex

M. Donadoni, E. Morassutto

Introduction

First Solution

Develop ad-hoc solutions for each task using general purpose
programming models

Low-level communication library (e.g. MPI)
Best performance possible
▶ Data is mutable in-place
▶ Optimizations tailored to the task to solve

Manual management of many aspects of the computation
▶ parallelization, synchronization, communication, …

Code is complex20
21

-1
0-

06

Noir
Introduction

First Solution

• Custom ad-hoc solutions for each task
• MPI is the de facto standard for HPC
• Advantage: best performance
• Drawback: many aspects need to be manually managed
• Debugging and performance tuning is difficult

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources

Sinks
Operators
Loops

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources

Sinks
Operators
Loops

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks

Operators
Loops

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks

Operators
Loops

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks
Operators

Loops

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks
Operators

Loops

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

3/19

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks
Operators
Loops

M. Donadoni, E. Morassutto

Introduction

Dataflow model

A

B

CD

E

F

G

H

Sources
Sinks
Operators
Loops

20
21

-1
0-

06

Noir
Introduction

Dataflow model

• Dataflow focuses on how data is exchanged between operators
• Each operator consumes one or more input streams and transforms

them into output streams
• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative

workloads
• Parallelism can be achieved by running each operator in parallel

4/19

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

M. Donadoni, E. Morassutto

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

20
21

-1
0-

06

Noir
Introduction

Dataflow model – Partitioning

• Sometimes we need to divide the elements of a stream into groups
• The same computation is performed independently on each group
• Example: group by color
• Parallelism can be achieved by processing each substream in parallel

4/19

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

M. Donadoni, E. Morassutto

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

20
21

-1
0-

06

Noir
Introduction

Dataflow model – Partitioning

• Sometimes we need to divide the elements of a stream into groups
• The same computation is performed independently on each group
• Example: group by color
• Parallelism can be achieved by processing each substream in parallel

4/19

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

M. Donadoni, E. Morassutto

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

20
21

-1
0-

06

Noir
Introduction

Dataflow model – Partitioning

• Sometimes we need to divide the elements of a stream into groups
• The same computation is performed independently on each group
• Example: group by color
• Parallelism can be achieved by processing each substream in parallel

4/19

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

M. Donadoni, E. Morassutto

Introduction

Dataflow model – Partitioning

group by
color

filter
circle

count

20
21

-1
0-

06

Noir
Introduction

Dataflow model – Partitioning

• Sometimes we need to divide the elements of a stream into groups
• The same computation is performed independently on each group
• Example: group by color
• Parallelism can be achieved by processing each substream in parallel

5/19

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream

Noir

M. Donadoni, E. Morassutto

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream

Noir

20
21

-1
0-

06

Noir
Introduction

Dataflow Frameworks

• Apache Flink/Spark: written in Java, high level API, widely used
• Timely Dataflow: written in Rust, does not provide many operators
• RStream: proof-of-concept written in Rust, fast but not expressive

enough
• Spark is not considered because benchmarks show it performs similar

to Flink
• Timely Dataflow is not considered because many operators are

missing, so implementing benchmarks is difficult

5/19

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream
Noir

M. Donadoni, E. Morassutto

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream
Noir

20
21

-1
0-

06

Noir
Introduction

Dataflow Frameworks

• Apache Flink/Spark: written in Java, high level API, widely used
• Timely Dataflow: written in Rust, does not provide many operators
• RStream: proof-of-concept written in Rust, fast but not expressive

enough
• Spark is not considered because benchmarks show it performs similar

to Flink
• Timely Dataflow is not considered because many operators are

missing, so implementing benchmarks is difficult

5/19

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream
Noir

M. Donadoni, E. Morassutto

Introduction

Dataflow Frameworks

Apache Flink and Apache Spark
Timely Dataflow
RStream
Noir

20
21

-1
0-

06

Noir
Introduction

Dataflow Frameworks

• Apache Flink/Spark: written in Java, high level API, widely used
• Timely Dataflow: written in Rust, does not provide many operators
• RStream: proof-of-concept written in Rust, fast but not expressive

enough
• Spark is not considered because benchmarks show it performs similar

to Flink
• Timely Dataflow is not considered because many operators are

missing, so implementing benchmarks is difficult

6/19

Introduction

Rust

Reliable type safety, borrow checker

Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

M. Donadoni, E. Morassutto

Introduction

Rust

Reliable type safety, borrow checker

Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

20
21

-1
0-

06

Noir
Introduction

Rust

• Reliable: if it compiles, it works
• Performant: compiled language
• Productive: helpful error messages, tools to manage projects
• Transparent: you don’t pay for what you don’t use

6/19

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++

Productive many libraries, good tooling
Transparent zero-cost abstractions

Versatile exposes low-level facilities

M. Donadoni, E. Morassutto

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++

Productive many libraries, good tooling
Transparent zero-cost abstractions

Versatile exposes low-level facilities

20
21

-1
0-

06

Noir
Introduction

Rust

• Reliable: if it compiles, it works
• Performant: compiled language
• Productive: helpful error messages, tools to manage projects
• Transparent: you don’t pay for what you don’t use

6/19

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

M. Donadoni, E. Morassutto

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

20
21

-1
0-

06

Noir
Introduction

Rust

• Reliable: if it compiles, it works
• Performant: compiled language
• Productive: helpful error messages, tools to manage projects
• Transparent: you don’t pay for what you don’t use

6/19

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions

Versatile exposes low-level facilities

M. Donadoni, E. Morassutto

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions

Versatile exposes low-level facilities

20
21

-1
0-

06

Noir
Introduction

Rust

• Reliable: if it compiles, it works
• Performant: compiled language
• Productive: helpful error messages, tools to manage projects
• Transparent: you don’t pay for what you don’t use

6/19

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

M. Donadoni, E. Morassutto

Introduction

Rust

Reliable type safety, borrow checker
Performant similar performance to C/C++
Productive many libraries, good tooling

Transparent zero-cost abstractions
Versatile exposes low-level facilities

20
21

-1
0-

06

Noir
Introduction

Rust

• Reliable: if it compiles, it works
• Performant: compiled language
• Productive: helpful error messages, tools to manage projects
• Transparent: you don’t pay for what you don’t use

7/19Noir

Based on the Dataflow model
Many supported operators
Written in Rust

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

M. Donadoni, E. Morassutto

Noir

Based on the Dataflow model
Many supported operators
Written in Rust

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

20
21

-1
0-

06

Noir
Noir

Noir

7/19Noir

Based on the Dataflow model
Many supported operators
Written in Rust

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

M. Donadoni, E. Morassutto

Noir

Based on the Dataflow model
Many supported operators
Written in Rust

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

20
21

-1
0-

06

Noir
Noir

Noir

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph

9/19

Noir

Job Graph and Execution Graph

S S

FM FM

GB GB

F F

C

S

FM

GB

F

C

scheduler

Host 1 Host 2

M. Donadoni, E. Morassutto

Noir

Job Graph and Execution Graph

S S

FM FM

GB GB

F F

C

S

FM

GB

F

C

scheduler

Host 1 Host 2

20
21

-1
0-

06

Noir
Noir

Job Graph and Execution Graph

• On the left: previous job graph
• Scheduler’s job is to build the execution graph
• Duplicating and allocating the operators in the hosts
• Sources read in parallel, two independent streams
• Group by has to move data between hosts so that same word goes to

same operator

10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …

Windows event time, processing time, count, sliding, tumbling,
session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …

Windows event time, processing time, count, sliding, tumbling,
session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals

10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals

10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals

10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals

11/19

Noir

API Comparison – Noir

fn main() {
let (config, args) = EnvironmentConfig::from_args();
let mut env = StreamEnvironment::new(config);
env.spawn_remote_workers();
let path = args.nth(1).expect("Missing dataset path");
let result = env

.stream(FileSource::new(path))

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();
env.execute();
if let Some(res) = result.get() {

eprintln!("Output: {:?}", res);
}

}

M. Donadoni, E. Morassutto

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

Noir

API Comparison – Noir

fn main() {
let (config, args) = EnvironmentConfig::from_args();
let mut env = StreamEnvironment::new(config);
env.spawn_remote_workers();
let path = args.nth(1).expect("Missing dataset path");
let result = env

.stream(FileSource::new(path))

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();
env.execute();
if let Some(res) = result.get() {

eprintln!("Output: {:?}", res);
}

}

20
21

-1
0-

06

Noir
Noir

API Comparison – RStream

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication

11/19

Noir

API Comparison – RStream

fn main() {
let path: String = env::args()

.nth(1)

.expect("Missing dataset path");
let word_count = Stream::from_readlines(&path)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|(word, _count)| word.clone())

.reduce(|(word, c1), (_word, c2)| (word, c1 + c2))

.collect_vec();
finalize();
println!("{:?}", word_count);
Ok(())

}

M. Donadoni, E. Morassutto

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

Noir

API Comparison – RStream

fn main() {
let path: String = env::args()

.nth(1)

.expect("Missing dataset path");
let word_count = Stream::from_readlines(&path)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|(word, _count)| word.clone())

.reduce(|(word, c1), (_word, c2)| (word, c1 + c2))

.collect_vec();
finalize();
println!("{:?}", word_count);
Ok(())

}20
21

-1
0-

06

Noir
Noir

API Comparison – Flink

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication

11/19

Noir

API Comparison – Flink

public static void main(String[] args) {
MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);

DataSet<Tuple2<String, Integer>> counts = env
.readTextFile(params.get("input"));
.flatMap(new Tokenizer())
.groupBy(0) // group by word
.sum(1); // sum the counts

counts.count();
}

M. Donadoni, E. Morassutto

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

Noir

API Comparison – Flink

public static void main(String[] args) {
MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);

DataSet<Tuple2<String, Integer>> counts = env
.readTextFile(params.get("input"));
.flatMap(new Tokenizer())
.groupBy(0) // group by word
.sum(1); // sum the counts

counts.count();
}

20
21

-1
0-

06

Noir
Noir

API Comparison – MPI

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication

11/19

Noir

API Comparison – MPI

void initDataTypes() {
int blocklengths[] = {STR_SIZE, 1};
MPI_Aint offsets[] = {offsetof(Word, word), offsetof(Word, count)};
MPI_Datatype types[] = {MPI_CHAR, MPI_UNSIGNED_LONG_LONG};

MPI_Type_create_struct(2, blocklengths, offsets, types, &wordDataType);
MPI_Type_commit(&wordDataType);

}

template <typename T> std::vector<T> receiveVector(int source, int tag) {
MPI_Status status;

// Probe message
MPI_Probe(source, tag, MPI_COMM_WORLD, &status);

// Get source and length of message
int length;
MPI_Get_count(&status, wordDataType, &length);

// Allocate buffer and receive result
std::vector<T> result(length);
MPI_Recv(result.data(), length, wordDataType, status.MPI_SOURCE,

status.MPI_TAG, MPI_COMM_WORLD, &status);
return result;

}

result_t execute(char *mmapped, size_t start, size_t end, size_t fileSize) {
size_t pos = start;

if (start != 0) {
char c = mmapped[pos++];
while (pos < fileSize && c != '\n') {
c = mmapped[pos++];

}
}

result_t count;
if (pos >= fileSize || pos > end)

return count;

std::string cur;
char c = mmapped[pos++];
while (pos <= fileSize && (c != '\n' || pos <= end)) {

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {
cur += std::tolower(c);

} else {
if (!cur.empty()) {
count[cur]++;

}
cur = "";

}
c = mmapped[pos++];

}
if (!cur.empty()) {
count[cur]++;

}
return count;

}

result_t merge(result_t a, const result_t &b) {
for (auto [k, v] : b)
a[k] += v;

return a;
}

result_t execute_mmap(size_t rank, size_t numProcesses, size_t numThreads,
std::string datasetPath) {

const size_t datasetSize = std::filesystem::file_size(datasetPath);
const size_t processChunk = (datasetSize + numProcesses - 1) / numProcesses;
const size_t threadChunk = (processChunk + numThreads - 1) / numThreads;
result_t result;
auto fd = open(datasetPath.c_str(), O_RDONLY);
char *mmapped = (char *)mmap(NULL, datasetSize, PROT_READ, MAP_SHARED, fd, 0);

#pragma omp declare reduction(+ : result_t : omp_out = merge(omp_out, omp_in))
#pragma omp parallel for schedule(static, 1) reduction(+ : result)

for (size_t th = 0; th < numThreads; th++) {
size_t start = processChunk * rank + threadChunk * th;
size_t end = start + threadChunk;

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld\n", rank, th, start,
end);

result = execute(mmapped, start, end, datasetSize);

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld -- done\n", rank, th,
start, end);

}
return result;

}

int main(int argc, char **argv) {
int rank;
int numProcesses;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

initDataTypes();

std::string filePath = "data/gutenberg40.txt";

std::string method = "mmap";

const int numThreads = omp_get_max_threads();

// Intermediate step
// Send intermediate results to other nodes, based on the hash of the word

// Prepare the buffers to be sent
std::vector<std::vector<Word>> flatten(numProcesses);
for (auto [w, c] : result) {
Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

size_t h = std::hash<std::string>{}(w);
flatten[h % numProcesses].push_back(word);

}

// Send the buffers
std::vector<MPI_Request> requests(numProcesses);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Isend(flatten[i].data(), flatten[i].size(), wordDataType, i, 1,

MPI_COMM_WORLD, &requests[i]);
fprintf(stderr, "[%2d] Process %d has sent %ld records to %d\n", rank,

rank, flatten[i].size(), i);
}

}

// Receive buffers from others
std::vector<Word> all = std::move(flatten[rank]);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
std::vector<Word> received = receiveVector<Word>(i, 1);
fprintf(stderr, "[%2d] Received intermediate result from %d\n", rank,

i);
all.insert(all.begin(), received.begin(), received.end());

}
}

// Merge the results
result.clear();
for (Word &w : all) {
result[w.word] += w.count;

}

// Wait on all the ISend, so that the buffers can be safely deallocated
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Wait(&requests[i], MPI_STATUS_IGNORE);

}
}

if (rank != 0) {
std::vector<Word> flatten;
for (auto [w, c] : result) {
Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

flatten.push_back(word);
}
MPI_Send(flatten.data(), flatten.size(), wordDataType, 0, 2,

MPI_COMM_WORLD);
fprintf(stderr, "[%2d] Process %d has sent %ld records\n", rank, rank,

flatten.size());
} else {

for (int i = 1; i < numProcesses; i++) {
std::vector<Word> otherResult = receiveVector<Word>(i, 2);
for (const auto &w : otherResult) {
result[w.word] += w.count;

}
fprintf(stderr, "[%2d] Received fragment %d/%d\n", rank, i,

numProcesses - 1);
}

}

MPI_Type_free(&wordDataType);
MPI_Finalize();

}

M. Donadoni, E. Morassutto

Expressivity

Performance Ease of use

Noir
FlinkMPI

RStream

Noir

API Comparison – MPI

void initDataTypes() {
int blocklengths[] = {STR_SIZE, 1};
MPI_Aint offsets[] = {offsetof(Word, word), offsetof(Word, count)};
MPI_Datatype types[] = {MPI_CHAR, MPI_UNSIGNED_LONG_LONG};

MPI_Type_create_struct(2, blocklengths, offsets, types, &wordDataType);
MPI_Type_commit(&wordDataType);

}

template <typename T> std::vector<T> receiveVector(int source, int tag) {
MPI_Status status;

// Probe message
MPI_Probe(source, tag, MPI_COMM_WORLD, &status);

// Get source and length of message
int length;
MPI_Get_count(&status, wordDataType, &length);

// Allocate buffer and receive result
std::vector<T> result(length);
MPI_Recv(result.data(), length, wordDataType, status.MPI_SOURCE,

status.MPI_TAG, MPI_COMM_WORLD, &status);
return result;

}

result_t execute(char *mmapped, size_t start, size_t end, size_t fileSize) {
size_t pos = start;

if (start != 0) {
char c = mmapped[pos++];
while (pos < fileSize && c != '\n') {

c = mmapped[pos++];
}

}

result_t count;
if (pos >= fileSize || pos > end)

return count;

std::string cur;
char c = mmapped[pos++];
while (pos <= fileSize && (c != '\n' || pos <= end)) {

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {
cur += std::tolower(c);

} else {
if (!cur.empty()) {

count[cur]++;
}
cur = "";

}
c = mmapped[pos++];

}
if (!cur.empty()) {

count[cur]++;
}
return count;

}

result_t merge(result_t a, const result_t &b) {
for (auto [k, v] : b)

a[k] += v;
return a;

}

result_t execute_mmap(size_t rank, size_t numProcesses, size_t numThreads,
std::string datasetPath) {

const size_t datasetSize = std::filesystem::file_size(datasetPath);
const size_t processChunk = (datasetSize + numProcesses - 1) / numProcesses;
const size_t threadChunk = (processChunk + numThreads - 1) / numThreads;
result_t result;
auto fd = open(datasetPath.c_str(), O_RDONLY);
char *mmapped = (char *)mmap(NULL, datasetSize, PROT_READ, MAP_SHARED, fd, 0);

#pragma omp declare reduction(+ : result_t : omp_out = merge(omp_out, omp_in))
#pragma omp parallel for schedule(static, 1) reduction(+ : result)

for (size_t th = 0; th < numThreads; th++) {
size_t start = processChunk * rank + threadChunk * th;
size_t end = start + threadChunk;

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld\n", rank, th, start,
end);

result = execute(mmapped, start, end, datasetSize);

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld -- done\n", rank, th,
start, end);

}
return result;

}

int main(int argc, char **argv) {
int rank;
int numProcesses;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

initDataTypes();

std::string filePath = "data/gutenberg40.txt";

std::string method = "mmap";

const int numThreads = omp_get_max_threads();

// Intermediate step
// Send intermediate results to other nodes, based on the hash of the word

// Prepare the buffers to be sent
std::vector<std::vector<Word>> flatten(numProcesses);
for (auto [w, c] : result) {

Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

size_t h = std::hash<std::string>{}(w);
flatten[h % numProcesses].push_back(word);

}

// Send the buffers
std::vector<MPI_Request> requests(numProcesses);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Isend(flatten[i].data(), flatten[i].size(), wordDataType, i, 1,

MPI_COMM_WORLD, &requests[i]);
fprintf(stderr, "[%2d] Process %d has sent %ld records to %d\n", rank,

rank, flatten[i].size(), i);
}

}

// Receive buffers from others
std::vector<Word> all = std::move(flatten[rank]);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
std::vector<Word> received = receiveVector<Word>(i, 1);
fprintf(stderr, "[%2d] Received intermediate result from %d\n", rank,

i);
all.insert(all.begin(), received.begin(), received.end());

}
}

// Merge the results
result.clear();
for (Word &w : all) {

result[w.word] += w.count;
}

// Wait on all the ISend, so that the buffers can be safely deallocated
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Wait(&requests[i], MPI_STATUS_IGNORE);

}
}

if (rank != 0) {
std::vector<Word> flatten;
for (auto [w, c] : result) {

Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

flatten.push_back(word);
}
MPI_Send(flatten.data(), flatten.size(), wordDataType, 0, 2,

MPI_COMM_WORLD);
fprintf(stderr, "[%2d] Process %d has sent %ld records\n", rank, rank,

flatten.size());
} else {

for (int i = 1; i < numProcesses; i++) {
std::vector<Word> otherResult = receiveVector<Word>(i, 2);
for (const auto &w : otherResult) {

result[w.word] += w.count;
}
fprintf(stderr, "[%2d] Received fragment %d/%d\n", rank, i,

numProcesses - 1);
}

}

MPI_Type_free(&wordDataType);
MPI_Finalize();

}20
21

-1
0-

06

Noir
Noir

API Comparison – MPI

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication

12/19

Performance Evaluation

Setup

Machine type 4× c5.2xlarge
Zone us-east-2b
Operating system Ubuntu 20.04.3 LTS
CPU Intel(R) Xeon(R) Platinum 8124M CPU
CPU Frequency 3.00 GHz
CPU Cores 4
CPU Threads 8
RAM 16 GiB
Network 5 Gbps
Ping 0.12 ms
Cost 1.36 $/h (4 VMs)

M. Donadoni, E. Morassutto

Performance Evaluation

Setup

Machine type 4× c5.2xlarge
Zone us-east-2b
Operating system Ubuntu 20.04.3 LTS
CPU Intel(R) Xeon(R) Platinum 8124M CPU
CPU Frequency 3.00 GHz
CPU Cores 4
CPU Threads 8
RAM 16 GiB
Network 5 Gbps
Ping 0.12 ms
Cost 1.36 $/h (4 VMs)20

21
-1

0-
06

Noir
Performance Evaluation

Setup

• Rented 4 VM on AWS
• 8 threads each with a fast network
• This is a very typical infrastructure for data intensive applications
• We tested the system under 11 benchmarks, we only show a subset

of them

13/19

Performance Evaluation

Wordcount

8 16 24 32
Number of cores

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
(s

)
Wordcount (Gutenberg)

Flink [41]
Noir [49]
RStream [39]
MPI [280]

M. Donadoni, E. Morassutto

Performance Evaluation

Wordcount

8 16 24 32
Number of cores

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
(s

)

Wordcount (Gutenberg)
Flink [41]
Noir [49]
RStream [39]
MPI [280]

20
21

-1
0-

06

Noir
Performance Evaluation

Wordcount

• This is a slight variation of the previous wordcount, the classical first
benchmark that many uses

• The dataset is called Gutenberg, text from many books (4GB, 100K
distinct words)

• Noir and RStream have the exact same performance
• MPI is faster but Flink is much slower
• The numbers in the legend are the number of lines of code

14/19

Performance Evaluation

Car Accidents

8 16 24 32
Number of cores

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
(s

)
Car Accidents

Flink [159]
MPI [790]
RStream [155]
Noir [220]
Noir (shared) [220]

M. Donadoni, E. Morassutto

Performance Evaluation

Car Accidents

8 16 24 32
Number of cores

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
(s

)

Car Accidents
Flink [159]
MPI [790]
RStream [155]
Noir [220]
Noir (shared) [220]

20
21

-1
0-

06

Noir
Performance Evaluation

Car Accidents

• The next benchmark tries to represent a real world application
• The dataset is a CSV with 24M car accidents in NYC
• 3 queries of different difficulty
• RStream is forced to run them one after the other, reading the

dataset 3 times
• When Noir does the same, it is as fast
• Noir does not have this limitation and can run the queries in parallel
• Even though we tried hard (see the number of lines) MPI is a bit

slower
• This shows that MPI does not guarantee the performance but

optimizations and fine-tuning may be required

15/19

Performance Evaluation

k-means

M. Donadoni, E. Morassutto

Performance Evaluation

k-means

20
21

-1
0-

06

Noir
Performance Evaluation

k-means

• Classical application: find the best clustering of a series of data
points

• We chose this benchmark because it’s a very popular iterative
algorithm

• k = # of clusters, h = # of iterations, n = # of points
• Flink is much slower than the others because the garbage collector

struggles to keep up with so many allocations
• Noir is faster than RStream, meaning that the iterations are more

optimized

15/19

Performance Evaluation

k-means

8 16 24 32
Number of cores

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(s

)
K-Means (k = 30, h = 15, n = 10M)

Flink [200]
RStream [157]
Noir [167]
MPI [419]

M. Donadoni, E. Morassutto

Performance Evaluation

k-means

8 16 24 32
Number of cores

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(s

)

K-Means (k = 30, h = 15, n = 10M)
Flink [200]
RStream [157]
Noir [167]
MPI [419]

20
21

-1
0-

06

Noir
Performance Evaluation

k-means

• Classical application: find the best clustering of a series of data
points

• We chose this benchmark because it’s a very popular iterative
algorithm

• k = # of clusters, h = # of iterations, n = # of points
• Flink is much slower than the others because the garbage collector

struggles to keep up with so many allocations
• Noir is faster than RStream, meaning that the iterations are more

optimized

15/19

Performance Evaluation

k-means

8 16 24 32
Number of cores

0

1

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
(s

)
K-Means (k = 30, h = 15, n = 10M)

RStream [157]
Noir [167]
MPI [419]

M. Donadoni, E. Morassutto

Performance Evaluation

k-means

8 16 24 32
Number of cores

0

1

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
(s

)

K-Means (k = 30, h = 15, n = 10M)
RStream [157]
Noir [167]
MPI [419]

20
21

-1
0-

06

Noir
Performance Evaluation

k-means

• Classical application: find the best clustering of a series of data
points

• We chose this benchmark because it’s a very popular iterative
algorithm

• k = # of clusters, h = # of iterations, n = # of points
• Flink is much slower than the others because the garbage collector

struggles to keep up with so many allocations
• Noir is faster than RStream, meaning that the iterations are more

optimized

16/19

Performance Evaluation

PageRank

8 16 24 32
Number of cores

0

20

40

60

80

100

120

140
Ex

ec
ut

io
n

tim
e

(s
)

PageRank

Flink [203]
Noir [83]
MPI [144]

M. Donadoni, E. Morassutto

Performance Evaluation

PageRank

8 16 24 32
Number of cores

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(s

)

PageRank

Flink [203]
Noir [83]
MPI [144]

20
21

-1
0-

06

Noir
Performance Evaluation

PageRank

• Classical real world application: find the page rank of the nodes of a
graph

• Iterative workload that stresses many aspects: iteration state for the
ranks, side input, join in the loop

• RStream lacks many of these features, so it cannot be implemented
with it

• Flink is a lot slower than the others, and it does not scale
• Noir is pretty close to MPI in comparison
• Note: The benchmark we’ve shown are all batch processing, but in

the thesis you can find also streaming workloads and latency analysis

17/19Conclusions

Noir performance is …
much better than Flink, up to 30×

very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

M. Donadoni, E. Morassutto

Conclusions

Noir performance is …
much better than Flink, up to 30×

very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

20
21

-1
0-

06

Noir
Conclusions

Conclusions

17/19Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features

similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

M. Donadoni, E. Morassutto

Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features

similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

20
21

-1
0-

06

Noir
Conclusions

Conclusions

17/19Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

M. Donadoni, E. Morassutto

Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

20
21

-1
0-

06

Noir
Conclusions

Conclusions

17/19Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems

M. Donadoni, E. Morassutto

Conclusions

Noir performance is …
much better than Flink, up to 30×
very similar to RStream, but Noir has many more features
similar to MPI in some workloads, a bit worse in others, but Noir is
much easier to use

Noir is able to achieve a better trade off between ease-of-use,
expressivity and performance than what is achievable with existing
systems20

21
-1

0-
06

Noir
Conclusions

Conclusions

18/19Future Work

Fault tolerance
Extensions with higher level API
Support for hybrid architectures (e.g. GPUs)

M. Donadoni, E. Morassutto

Future Work

Fault tolerance
Extensions with higher level API
Support for hybrid architectures (e.g. GPUs)

20
21

-1
0-

06

Noir
Conclusions

Future Work

• Biggest missing feature that Flink has is Fault Tolerance
• Ext: SQL like interface for expressing the queries, pre-written ML

algorithms (MLlib, GraphX)
• Try to exploit hybrid architectures, for example trying to add graphic

cards for accelerating operators

19/19

Noir
Design, Implementation and Evaluation

of a Streaming and Batch Processing Framework
Marco Donadoni Edoardo Morassutto

Noir
Design, Implementation and Evaluation

of a Streaming and Batch Processing Framework
Marco Donadoni Edoardo Morassutto

20
21

-1
0-

06

Noir
Thanks for your attention!

	Introduction
	Noir
	Performance Evaluation
	Conclusions
	Thanks for your attention!

