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• Dataset is not mutated in-place
• Dataflow is extended to support loops in order to implement iterative
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• Timely Dataflow: written in Rust, does not provide many operators
• RStream: proof-of-concept written in Rust, fast but not expressive

enough
• Spark is not considered because benchmarks show it performs similar

to Flink
• Timely Dataflow is not considered because many operators are

missing, so implementing benchmarks is difficult
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• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph



8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph



8/19

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C

M. Donadoni, E. Morassutto

Noir

Wordcount

let source = FileSource::new("/path/to/dataset.txt");
env.stream(source)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();

S FM GB F C20
21

-1
0-

06

Noir
Noir

Wordcount

• First example: given a text file, count how many times each word
appears in it

• Source that reads the file in parallel
• Flat map that splits each line into words
• Partition the stream for each word
• Count the number of occurrences of each word
• Collect the results in an array
• The graph in the bottom is called Job Graph
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Job Graph and Execution Graph

• On the left: previous job graph
• Scheduler’s job is to build the execution graph
• Duplicating and allocating the operators in the hosts
• Sources read in parallel, two independent streams
• Group by has to move data between hosts so that same word goes to

same operator
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Iterations side-input, iteration state, nested iterations, …
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Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals



10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …

Joins inner, outer, ship strategies, local strategies, …
Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals



10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals



10/19

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

M. Donadoni, E. Morassutto

Noir

Supported Operators

Basic map, filter, fold, reduce, group_by, …
Windows event time, processing time, count, sliding, tumbling,

session, …
Joins inner, outer, ship strategies, local strategies, …

Iterations side-input, iteration state, nested iterations, …

20
21

-1
0-

06

Noir
Noir

Supported Operators

• Basic operators transform one stream into another
• Windows make possible to execute operations on unbounded streams

by slicing them
• Join merge two streams into one
• Iterations make data recirculate in a loop
• Point being that expressivity is one of our goals



11/19

Noir

API Comparison – Noir

fn main() {
let (config, args) = EnvironmentConfig::from_args();
let mut env = StreamEnvironment::new(config);
env.spawn_remote_workers();
let path = args.nth(1).expect("Missing dataset path");
let result = env

.stream(FileSource::new(path))

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|word| word.clone())

.fold(0, |count, _word| *count += 1)

.collect_vec();
env.execute();
if let Some(res) = result.get() {

eprintln!("Output: {:?}", res);
}

}
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API Comparison – RStream

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication
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API Comparison – RStream

fn main() {
let path: String = env::args()

.nth(1)

.expect("Missing dataset path");
let word_count = Stream::from_readlines(&path)

.flat_map(|line| Tokenizer::tokenize(line))

.group_by(|(word, _count)| word.clone())

.reduce(|(word, c1), (_word, c2)| (word, c1 + c2))

.collect_vec();
finalize();
println!("{:?}", word_count);
Ok(())

}
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API Comparison – Flink

• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication
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API Comparison – Flink

public static void main(String[] args) {
MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);

DataSet<Tuple2<String, Integer>> counts = env
.readTextFile(params.get("input"));
.flatMap(new Tokenizer())
.groupBy(0) // group by word
.sum(1); // sum the counts

counts.count();
}
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API Comparison – MPI

void initDataTypes() {
int blocklengths[] = {STR_SIZE, 1};
MPI_Aint offsets[] = {offsetof(Word, word), offsetof(Word, count)};
MPI_Datatype types[] = {MPI_CHAR, MPI_UNSIGNED_LONG_LONG};

MPI_Type_create_struct(2, blocklengths, offsets, types, &wordDataType);
MPI_Type_commit(&wordDataType);

}

template <typename T> std::vector<T> receiveVector(int source, int tag) {
MPI_Status status;

// Probe message
MPI_Probe(source, tag, MPI_COMM_WORLD, &status);

// Get source and length of message
int length;
MPI_Get_count(&status, wordDataType, &length);

// Allocate buffer and receive result
std::vector<T> result(length);
MPI_Recv(result.data(), length, wordDataType, status.MPI_SOURCE,

status.MPI_TAG, MPI_COMM_WORLD, &status);
return result;

}

result_t execute(char *mmapped, size_t start, size_t end, size_t fileSize) {
size_t pos = start;

if (start != 0) {
char c = mmapped[pos++];
while (pos < fileSize && c != '\n') {
c = mmapped[pos++];

}
}

result_t count;
if (pos >= fileSize || pos > end)

return count;

std::string cur;
char c = mmapped[pos++];
while (pos <= fileSize && (c != '\n' || pos <= end)) {

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {
cur += std::tolower(c);

} else {
if (!cur.empty()) {
count[cur]++;

}
cur = "";

}
c = mmapped[pos++];

}
if (!cur.empty()) {
count[cur]++;

}
return count;

}

result_t merge(result_t a, const result_t &b) {
for (auto [k, v] : b)
a[k] += v;

return a;
}

result_t execute_mmap(size_t rank, size_t numProcesses, size_t numThreads,
std::string datasetPath) {

const size_t datasetSize = std::filesystem::file_size(datasetPath);
const size_t processChunk = (datasetSize + numProcesses - 1) / numProcesses;
const size_t threadChunk = (processChunk + numThreads - 1) / numThreads;
result_t result;
auto fd = open(datasetPath.c_str(), O_RDONLY);
char *mmapped = (char *)mmap(NULL, datasetSize, PROT_READ, MAP_SHARED, fd, 0);

#pragma omp declare reduction(+ : result_t : omp_out = merge(omp_out, omp_in))
#pragma omp parallel for schedule(static, 1) reduction(+ : result)

for (size_t th = 0; th < numThreads; th++) {
size_t start = processChunk * rank + threadChunk * th;
size_t end = start + threadChunk;

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld\n", rank, th, start,
end);

result = execute(mmapped, start, end, datasetSize);

fprintf(stderr, "[%2ld/%2ld] has interval %9ld - %9ld -- done\n", rank, th,
start, end);

}
return result;

}

int main(int argc, char **argv) {
int rank;
int numProcesses;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

initDataTypes();

std::string filePath = "data/gutenberg40.txt";

std::string method = "mmap";

const int numThreads = omp_get_max_threads();

// Intermediate step
// Send intermediate results to other nodes, based on the hash of the word

// Prepare the buffers to be sent
std::vector<std::vector<Word>> flatten(numProcesses);
for (auto [w, c] : result) {
Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

size_t h = std::hash<std::string>{}(w);
flatten[h % numProcesses].push_back(word);

}

// Send the buffers
std::vector<MPI_Request> requests(numProcesses);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Isend(flatten[i].data(), flatten[i].size(), wordDataType, i, 1,

MPI_COMM_WORLD, &requests[i]);
fprintf(stderr, "[%2d ] Process %d has sent %ld records to %d\n", rank,

rank, flatten[i].size(), i);
}

}

// Receive buffers from others
std::vector<Word> all = std::move(flatten[rank]);
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
std::vector<Word> received = receiveVector<Word>(i, 1);
fprintf(stderr, "[%2d ] Received intermediate result from %d\n", rank,

i);
all.insert(all.begin(), received.begin(), received.end());

}
}

// Merge the results
result.clear();
for (Word &w : all) {
result[w.word] += w.count;

}

// Wait on all the ISend, so that the buffers can be safely deallocated
for (int i = 0; i < numProcesses; i++) {

if (rank != i) {
MPI_Wait(&requests[i], MPI_STATUS_IGNORE);

}
}

if (rank != 0) {
std::vector<Word> flatten;
for (auto [w, c] : result) {
Word word;
strncpy(word.word, w.c_str(), STR_SIZE);
word.word[STR_SIZE - 1] = '\0';
word.count = c;

flatten.push_back(word);
}
MPI_Send(flatten.data(), flatten.size(), wordDataType, 0, 2,

MPI_COMM_WORLD);
fprintf(stderr, "[%2d ] Process %d has sent %ld records\n", rank, rank,

flatten.size());
} else {

for (int i = 1; i < numProcesses; i++) {
std::vector<Word> otherResult = receiveVector<Word>(i, 2);
for (const auto &w : otherResult) {
result[w.word] += w.count;

}
fprintf(stderr, "[%2d ] Received fragment %d/%d\n", rank, i,

numProcesses - 1);
}

}

MPI_Type_free(&wordDataType);
MPI_Finalize();

}
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• Let’s compare the implementation of wordcount in the various
frameworks

• Noir: some boilerplate before and after the application logic, but the
code is cohered

• RStream: the same, little boilerplate, code very compact
• Flink: again
• MPI: around 200 LoC, less readable code, logic is mixed with

communication
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Setup

Machine type 4× c5.2xlarge
Zone us-east-2b
Operating system Ubuntu 20.04.3 LTS
CPU Intel(R) Xeon(R) Platinum 8124M CPU
CPU Frequency 3.00 GHz
CPU Cores 4
CPU Threads 8
RAM 16 GiB
Network 5 Gbps
Ping 0.12 ms
Cost 1.36 $/h (4 VMs)
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• Rented 4 VM on AWS
• 8 threads each with a fast network
• This is a very typical infrastructure for data intensive applications
• We tested the system under 11 benchmarks, we only show a subset

of them
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• This is a slight variation of the previous wordcount, the classical first
benchmark that many uses

• The dataset is called Gutenberg, text from many books (4GB, 100K
distinct words)

• Noir and RStream have the exact same performance
• MPI is faster but Flink is much slower
• The numbers in the legend are the number of lines of code
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• The next benchmark tries to represent a real world application
• The dataset is a CSV with 24M car accidents in NYC
• 3 queries of different difficulty
• RStream is forced to run them one after the other, reading the

dataset 3 times
• When Noir does the same, it is as fast
• Noir does not have this limitation and can run the queries in parallel
• Even though we tried hard (see the number of lines) MPI is a bit

slower
• This shows that MPI does not guarantee the performance but

optimizations and fine-tuning may be required
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• Classical application: find the best clustering of a series of data
points

• We chose this benchmark because it’s a very popular iterative
algorithm

• k = # of clusters, h = # of iterations, n = # of points
• Flink is much slower than the others because the garbage collector

struggles to keep up with so many allocations
• Noir is faster than RStream, meaning that the iterations are more

optimized
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• Classical real world application: find the page rank of the nodes of a
graph

• Iterative workload that stresses many aspects: iteration state for the
ranks, side input, join in the loop

• RStream lacks many of these features, so it cannot be implemented
with it

• Flink is a lot slower than the others, and it does not scale
• Noir is pretty close to MPI in comparison
• Note: The benchmark we’ve shown are all batch processing, but in

the thesis you can find also streaming workloads and latency analysis
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Future Work

• Biggest missing feature that Flink has is Fault Tolerance
• Ext: SQL like interface for expressing the queries, pre-written ML

algorithms (MLlib, GraphX)
• Try to exploit hybrid architectures, for example trying to add graphic

cards for accelerating operators
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